
Tellus 000, 000–000 (0000) Printed 13 April 2010 (Tellus LATEX style file v2.2)

Probabilistic hindcasts and projections of the coupled
climate, carbon cycle, and Atlantic meridional overturning

circulation system: A Bayesian fusion of century-scale
observations with a simple model

By NATHAN M. URBAN1� and KLAUS KELLER1,2,
1Department of Geosciences, Penn State University, University Park, PA 16802, U.S.A.

2Earth and Environmental Systems Institute, Penn State University, University Park, PA 16802, U.S.A.

13 April 2010

ABSTRACT
How has the Atlantic Meridional Overturning Circulation (AMOC) varied over the past
centuries and what is the risk of an anthropogenic AMOC collapse? We report probabilis-
tic projections of the future climate which improve on previous AMOC projection studies
by (i) greatly expanding the considered observational constraints and (ii) carefully sam-
pling the tail areas of the parameter probability distribution function (pdf). We use a
Bayesian inversion to constrain a simple model of the coupled climate, carbon cycle, and
AMOC systems using observations to derive multi-century hindcasts and projections.

Our hindcasts show considerable skill in representing the observational constraints.
We show that robust AMOC risk estimates can require carefully sampling the parameter
pdfs. We find a low probability of experiencing an AMOC collapse within the 21st century
for a business-as-usual emissions scenario. The probability of experiencing an AMOC
collapse within two centuries is 1/10. The probability of crossing a forcing threshold and
triggering a future AMOC collapse (by 2300) is approximately 1/30 in the 21st century
and over 1/3 in the 22nd. Given the simplicity of the model structure and uncertainty
in the forcing assumptions, our analysis should be considered a proof of concept and the
quantitative conclusions subject to severe caveats.

1 Introduction

Fossil fuel consumption has driven atmospheric carbon
dioxide (CO2) concentrations far beyond the range experi-
enced by previous civilizations. This anthropogenic pertur-
bation of the Earth system has already committed future
generations to considerable climate change, with potentially
profound and irreversible effects on ecosystems and human
society (Adger et al., 2007; Alley et al., 2007). Here we
focus on a key example of such an anthropogenic climate
change impact: a potential collapse of the Atlantic merid-
ional overturning circulation (AMOC) (Stouffer et al., 2006).
An AMOC collapse would likely have nontrivial economic
impacts, for example by changes in global temperature and
precipitation patterns (Keller et al., 2000; 2004; Link and
Tol, 2004; Vellinga and Wood, 2002; Schneider et al., 2007a;
Kuhlbrodt et al., 2009).

The AMOC is sensitive to anthropogenic climate forc-
ings (Meehl et al., 2007, Sec. 10.3.4). Current surface tem-
perature patterns are strongly influenced by the Gulf stream
and the North Atlantic current (Vellinga and Wood, 2002).
These surface currents transport heat from the tropics to
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higher northern latitudes in the Atlantic basin. The heat
loss from the surface waters to the atmosphere cools the
waters and acts to increase the water density. In addition,
the formation of sea ice at high latitudes acts to increase
the salinity of the surface waters due to brine rejection. The
decrease in temperature and the increase in salinity both
increase the water densities. Surface waters that are denser
than the underlying water masses sink. This deepwater for-
mation process is an important part of a global deepwater
circulation system that is often referred to as the “global
conveyor belt” (Broecker, 1991).

The conveyor belt circulation may collapse in response
to anthropogenic climate forcings (cf. Stommel, 1961; Chal-
lenor et al., 2006; Meehl et al., 2007; Vizcaino et al., 2008).
Anthropogenic greenhouse gas emissions are projected to in-
crease surface temperatures and freshwater input from pre-
cipitation in the North Atlantic (Meehl et al., 2007, Sec.
10.3.4). Both of these factors drive a decrease of the sur-
face water densities. A decrease in the surface water density
acts to decrease the density gradient between surface and
deepwaters and hence acts to decrease the AMOC intensity.

The AMOC may exhibit a threshold response to an-
thropogenic forcing due to positive feedbacks (cf. Stommel,
1961). One key positive oceanic feedback destabilizing the
AMOC is driven by the net freshwater input in the North
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2 N. M. URBAN AND K. KELLER

Atlantic region (Baumgartner and Reichel, 1975; Stommel,
1961). Consider, for example, an AMOC weakening due to
the anthropogenic climate forcing as discussed above. This
AMOC weakening results in a slowdown of the surface cur-
rents transporting waters to the deepwater formation sites,
which increases the transit time of these surface waters
through the region of net freshwater inputs from the atmo-
sphere, and decreases the rate at which salt is transported
poleward. The increased transit time and reduced salt trans-
port decrease the salinity of the surface waters. The decrease
in salinity decreases the water density, which further weak-
ens the overturning through a positive feedback loop.

Oceanic observations show mixed evidence for an
AMOC slowdown over the last few decades. For example,
repeated transects at 26 ◦N (Bryden et al., 2005) have been
interpreted as a 30 percent AMOC slowdown over the last
four decades. In addition, salinities in the northern North
Atlantic Ocean have decreased considerably since the mid-
1960s (Curry and Mauritzen, 2005). The evidence for a po-
tential AMOC weakening is, however, not straightforward to
interpret. For example, recent measurements at high tempo-
ral resolution suggest that the AMOC decrease reported by
Bryden et al. (2005) may be the result of unforced internal
variability, as opposed to being a response to anthropogenic
forcing (Cunningham et al., 2007).

Current projections of the AMOC are deeply uncertain
(Keller et al., 2007b; Zickfeld et al., 2007; Meehl et al., 2007).
There is disagreement in the literature regarding the proba-
bility of such an outcome. The Intergovernmental Panel on
Climate Change (IPCC) has recently stated that “it is very
unlikely that the MOC will undergo a large abrupt transi-
tion during the 21st century”, implying a probability of less
than ten percent (Alley et al., 2007).

Previous studies deriving probabilistic AMOC projec-
tions have broken important new ground, but are still silent
on key questions. The first, and arguably simplest, class of
AMOC projections uses very simplified models (e.g., box or
2.5-dimensional models) with rather limited use of observa-
tional constraints (Knutti et al., 2003; Yohe et al., 2006).
The use of low-dimensional AMOC models enables the ex-
tensive sampling of the large parameter space and to explore
the tails of the associated probability density function (pdf).
The disadvantage of using these simple models is that the re-
sulting scenarios hinge critically on the assumption that the
neglected feedbacks, for example through changes in the res-
piration of the soil carbon pool (Friedlingstein et al., 2006),
are unimportant.

The second class of AMOC projections is based on
Earth System Models of Intermediate Complexity (EMICs)
with considerably improved representation of relevant pro-
cesses and feedbacks (e.g., Challenor et al., 2006). However,
studies using EMICs sample the tails of the parameter prob-
ability density function rather sparsely (Challenor et al.,
2006).

The third class of AMOC projections is based on high
resolution coupled Atmosphere Ocean General Circulation
Models (AOGCM) (e.g., Schneider et al., 2007b; Meehl
et al., 2007). This approach has the advantage of being based
on more realistic models, but the large computational costs
of AOGCMs precludes at this time to exhaustively sample
the tails of the parameter distributions. The recent IPCC
report (Meehl et al., 2007) concludes, for example, that no

analyzed AOGCM with a reasonable AMOC hindcast shows
an abrupt AMOC collapse in the 21st century for the con-
sidered forcing scenario and parameter values. Note, how-
ever, that more recent analyses may suggest that in a cou-
pled AOGCM a high CO2 forcing scenario can result in an
AMOC collapse over a multi-century time-scale (Vizcaino
et al., 2008). In addition, as shown in previous studies using
simpler models, an AMOC collapse can be a low probability
event and hence occur in the tails of the parameter pdf (cf.
Challenor et al., 2006; Zickfeld et al., 2007) which may not
be sampled by the best-guess parameter values used for the
AOGCM runs analyzed in Meehl et al. (2007). Finally, cur-
rent AOGCMs may overestimate the stability of the AMOC
due to structural errors (Hofmann and Rahmstorf, 2009).

In summary, robust probabilistic AMOC hindcasts and
projections require at least two key properties: (i) they have
to be based on mechanistically sound models that include
the key feedbacks, and (ii) they need to represent the full
parametric uncertainty (including the tails of the joint prob-
ability density function) given relevant observational con-
straints.

Ideally, one would fuse all of the available and relevant
constraints into all available high resolution AOGCMs in
a Bayesian model averaging sense (Draper, 1995; Hoeting
et al., 1999). However, this is currently not possible due to
prohibitive computational requirements. Here we take a less
ambitious approach and fuse a subset of relevant observa-
tions with a simple model of the coupled carbon, climate,
and AMOC system. The results from this proof-of-concept
study are hence subject to several caveats (discussed below)
and are not fully robust. The main limitations stem from
the model simplifications and the limited, highly aggregated
nature of the data used. The main advances of our study
compared to previous research are the expansion of the con-
sidered observational constraints, the expanded sampling of
the tails of the parameter pdf, and the correction for the
effects of autocorrelated residuals.

2 Model

The past and future AMOC strength depends on an in-
tricate interplay of radiative climate forcings (e.g., due to
solar variability, volcanic and industrial aerosols, or green-
house gases such as carbon dioxide), the influence of chang-
ing surface air temperatures and precipitation patterns on
surface fluxes of heat and freshwater, and the resulting
AMOC changes. Deriving probabilistic AMOC hindcasts
and projections therefore requires to couple models of (i)
the carbon cycle, (ii) surface temperature and precipitation
patterns, and (iii) the AMOC response. These model com-
ponents and their coupling are described below.

2.1 Climate module

We use the DOECLIM physical climate component of
the ACC2 model, which is an energy balance model of the
atmosphere coupled to a one-dimensional diffusive ocean
model to calculate global temperature and ocean heat con-
tent. The model is described in great detail in Kriegler
(2005) and Tanaka et al. (2007), hence we outline here only
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the key elements and parameters that are relevant for this
study.

In this model, the land and sea surface temperatures
TLS and TSS are determined by energy balance conditions,

ṪLS = (aΓ,L CA + CL)−1

×
h
QL − λL TLS − k

fL

“
TLS − bSI

aΓ,S

aΓ,L
TSS

”i
, (1)

ṪSS = (aΓ,S bSI CA + cV zS)−1

×
h
QS − λS − k

1 − fL

“
bSI

aΓ,S

aΓ,L
TSS − TLS

”
− FO

i
.

(2)

Here the overdot denotes the time derivative, C and c are
land/air and water heat capacities, Q are radiative forcings
(at the top of the atmosphere), λ are climate feedback pa-
rameters, aΓ are surface-troposphere couplings, bSI is a ma-
rine surface air warming enhancement factor, k is a land-sea
heat exchange coefficient, FO is the heat flux into the inte-
rior ocean, zS is the depth of the ocean mixed layer, and fL

is the land fraction of the Earth’s surface area. The global
surface air temperature is a weighted average of the land
and sea surface temperatures TLS and TSS ,

T = fL TLS + (1 − fL)bSI TSS . (3)

The equilibrium climate sensitivity to a doubling of atmo-
spheric CO2 concentration is given by a similar weighted
average of land and sea sensitivities,

S = fL SL + (1 − fL)bSI SS , (4)

which in turn are functions of the feedback parameters λL

and λS ,

SL = Q2×
k bSI + (1 − fL)fL λS

k bSI fL λL + (1 − fL)(k + fL λL)λS
, (5)

SS = Q2×
k + (1 − fL)fL λL

k bSI fL λL + (1 − fL)(k + fL λL)λS
, (6)

where Q2× = 3.7 W/m2 is the radiative forcing for a dou-
bling of atmospheric CO2, giving

S = Q2×
k bSI + (1 − fL)2fL bSI λL + (1 − fL)f2

L λS

k bSI fL λL + (1 − fL)(k + fL λL)λS
. (7)

The uptake of heat into the interior ocean is governed
by a one-dimensional diffusion equation,

ṪO(z, t) = κV
∂2

∂z2
TO(z, t) , (8)

subject to the boundary conditions that TO = TSS at the
surface (z = 0) and the heat flux into the ocean floor
(z = zB) vanishes, where TO is the ocean temperature as
a function of depth and time and κV is the vertical diffu-
sivity of heat. This diffusion equation has an exact solution
which is approximated in DOECLIM by a series expansion.

The CO2 radiative forcing of the climate is given by
the logarithmic response to increases in atmospheric CO2 as
predicted by the carbon module. The other radiative forcings
(e.g., non-CO2 greenhouse gases, solar irradiance, volcanism,
and tropospheric aerosols) are taken from Kriegler (2005)
with some adaptations described later. Following previous
work (Hegerl et al., 2006) we account for the considerable
uncertainty in the magnitude of the aerosol forcing feedback
due to aerosol-cloud interactions, or aerosol indirect effect

(Lohmann and Feichter, 2005), by applying a multiplicative
scale factor α to the radiative forcing. This scale factor is
estimated in the assimilation step by fitting the forced model
to the observed climate response.

2.2 Carbon cycle model

We couple a carbon cycle model to the climate module.
Temperature changes in the climate module affect terrestrial
and ocean carbon sources and sinks. In turn, these sources
and sinks alter the atmospheric carbon dioxide concentra-
tion which forces the climate module. To model the carbon
cycle we use a nonlinear impulse response approximation to
the Hamburg AOGCM (Hooss et al., 2001), as modified by
Ricciuto et al. (2008). The model structure and the calibra-
tion using oceanic, atmospheric, and ice core observations
are detailed in Ricciuto et al. (2008). We hence give here
just a brief overview.

The carbon cycle module considers the terrestrial as
well as oceanic carbon cycles. There are four terrestrial car-
bon pools: leafy vegetation, living wood, detritus, and humus
(soil carbon). The ocean model of carbon uptake has four
layers: a mixed atmosphere/surface layer and three deeper
layers. The three key parameters we alter in the carbon cy-
cle model are the carbon fertilization parameter β, the res-
piration sensitivity Q10, and the thermocline transfer rate
η. The carbon fertilization parameter affects the magnitude
of the atmospheric CO2 flux taken up by living plants (net
primary productivity) due to the influence of CO2 concen-
trations on plant growth. The respiration sensitivity affects
the increase in atmospheric CO2 due to temperature accel-
erated organic decay. The thermocline transfer rate governs
the rate at which dissolved carbon diffuses from the surface
into the deep ocean.

An inconsistency in the coupled model structure is that
the ocean heat diffusion parameter in the climate module
(κV ) is independent of the ocean carbon diffusion parameter
in the carbon module (η). In the physical ocean, the heat
uptake rate and carbon uptake rate are related to each other,
as they both depend on the strength of vertical mixing in the
ocean. A decoupled treatment of the two diffusion constants
could potentially lead to artificially high model skill during
model tuning, since it is possible for the ocean heat and
ocean carbon observations to be fit with heat and carbon
uptake rates which are incompatible with each other in the
real Earth system. This limitation could be addressed in a
more sophisticated model, such as an EMIC, which has a
more physical representation of ocean mixing processes.

As described for example in Siegenthaler and Joos
(1992), low resolution ocean models have difficulties in re-
producing different tracer distributions with a common pa-
rameterization of oceanic mixing. A key reason for this is
that the numerical diffusivity in these low resolution models
represents a complex mixture of processes that have different
temporal and spatial patterns for different tracers. Note that
this tension between different tracers with respect to diffu-
sivity estimates still can be seen in EMICs (cf. Schmittner
et al., 2009). This numerical artifact imposes considerable
caveats, described later.
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2.3 AMOC box model

We approximate the AMOC by a simple box model de-
veloped by Zickfeld et al. (2004), forced with temperature
change from the climate module. The Atlantic Ocean is rep-
resented by four well-mixed boxes: the southern, tropical,
and northern surface waters, and the deep water. The boxes
are connected sequentially so that surface currents flow from
south to north by way of the tropics, overturn, and return
to the south as deep water. This self contained cycle ignores
the transport of water outside of the Atlantic.

The AMOC model does not feed back to the DOE-
CLIM climate model, so that regional sea surface tempera-
ture changes arising from AMOC changes have no effect on
global surface temperatures. Global temperatures in turn
influence further AMOC changes solely through external
forcing and not through any internal atmosphere-ocean dy-
namics. These likely important higher order interactions are
perhaps best addressed in fully coupled atmosphere-ocean
circulation models (e.g., Krebs and Timmermann, 2007).

The AMOC model also does not feed back to the NICCS
carbon cycle model, and so does not allow AMOC changes to
affect ocean carbon uptake. A mechanistically sound repre-
sentation of the AMOC-carbon cycle feedback would require
the development of a coupled AMOC-carbon cycle model
and is not considered in this analysis. Studies suggest that
this feedback can have measurable effects on atmospheric
CO2 (e.g., Sarmiento and Le Quéré, 1996; Obata, 2007; Zick-
feld et al., 2008), but arguably the effect is small compared
to the overall CO2 forcing. For example, Obata (2007) found
that, in a AOGCM hosing experiment in which the AMOC
collapsed by 2150, the collapse alters atmospheric CO2 in
2300 by less than 50 ppm (compared to a base concentra-
tion of 2000 ppm in 2300). In an EMIC experiment, Zickfeld
et al. (2008) found that an AMOC weakening alters atmo-
spheric CO2 in 2500 by only 13–34 ppm, in scenarios which
achieved maximum concentrations of 1500 ppm.

The dynamics of the box temperatures Ti and salinities
Si are governed by a simple system of coupled first order
ordinary differential equations:

ṪS =
m

VS
(TD − TS) + λS(T ∗

S − TS) , (9)

ṪN =
m

VN
(TT − TN ) + λN (T ∗

N − TN ) , (10)

ṪT =
m

VT
(TS − TT ) + λT (T ∗

T − TT ) , (11)

ṪD =
m

VD
(TN − TD) , (12)

ṠS =
m

VS
(SD − SS) +

S0FST

VS
, (13)

ṠN =
m

VN
(ST − SN ) − S0(FN + FTN )

VN
, (14)

ṠT =
m

VT
(SS − ST ) − S0(FST − FTN − FT )

VT
, (15)

ṠD =
m

VD
(SN − SD) , (16)

where T ∗
i are the temperatures to which the boxes relax, λi

are thermal coupling constants, Vi are box volumes, and
Fi are external freshwater fluxes into surface boxes. FN

represents the meltwater flux into the North Atlantic, and
FT represents the flux out of the tropical Pacific into the

North Atlantic (Latif et al., 2000). Fij are freshwater fluxes
between surface boxes, and S0 is a reference salinity. The
key observable parameter in this analysis is the meridional
volume transport rate (overturning) between the southern
and northern boxes, referred to henceforth as the AMOC
strength, given by

m = k[β(SN − SS) − α(TN − TS)] , (17)

where k is a hydraulic constant and α and β are thermal
and haline expansion coefficients. If the model produces an
AMOC reversal, m is set to zero, representing an AMOC
collapse.

The relaxation temperatures and freshwater fluxes of
the surface boxes are time dependent functions of the global
temperature forcing ∆T , which is calculated by the climate
module:

T ∗
S = T ∗

S0 + pS∆T , (18)

T ∗
N = T ∗

N0 + pN∆T , (19)

T ∗
T = T ∗

T0 + pT ∆T , (20)

and

FN = hN pNH ∆T , (21)

FT = −hT pT ∆T , (22)

FST = FST0 + hST pSH ∆T , (23)

FTN = FTN0 + hTN pNH ∆T , (24)

where the T ∗
i0 are unforced relaxation temperatures, the pi

are linear pattern scaling coefficients to estimate regional
Atlantic and hemispheric temperatures from global temper-
atures, and the hi parameterize the hydrological sensitivities
to warming.

One key uncertain parameter affecting the AMOC re-
sponse to anthropogenic climate forcing is the North At-
lantic hydrological sensitivity, h ≡ hN , which gives the
change in freshwater flux into the northern box for a given
change in surface air temperature. A high sensitivity im-
plies a greater AMOC sensitivity to anthropogenic forcing
(Zickfeld et al., 2004).

3 Data

3.1 Forcings

The forcings in the hindcast calibration period span the
years 1850–2009. We consider CO2 emissions (1850–2006)
from (i) fossil fuel burning, cement manufacture, and gas
flaring (taken from Boden et al., 2009), and (iii) land-use
changes (1850–2000) from Jain and Yang (2005), based on
the land-use estimate of Ramankutty and Foley (1999). The
anthropogenic emissions are extended to 2009 by linear ex-
trapolation of the 1997–2006 trend. The land use emissions
2001–2009 are held constant at 2000 values.

Because the DOECLIM forcings have not been updated
past the year 2000, we extend them to 2009 using a combina-
tion of updated datasets and historical extrapolation. Solar
forcing is updated through 2009 using the PMOD compos-
ite total solar irradiance dataset (Frölich and Lean, 1998).
Sulfate aerosol forcing is updated to 2005 using version 2.7
of the Pacific Northwest Laboratory annual inventory of his-
torical SO2 emissions (S. Smith et al., 2009, in preparation,
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Figure 1. Annual CO2 emissions (historical and projected
business-as-usual). Depicted are total emissions (thick solid
curve), fossil fuel emissions (thin solid curve), and land use emis-
sions (thin dashed curve).

personal communication) and converted to radiative forcing
by the procedure described in Kriegler, 2005; 2006–2009 SO2

emissions are held constant at 2005 values. Volcanic forcing
is assumed zero after 2000. Non-CO2 greenhouse gases are
extended to 2009 by linear extrapolation of the 1991–2000
trend.

For projections beyond the year 2009, future forcings
from fossil CO2 emissions, from non-CO2 greenhouse gas,
and anthropogenic aerosols are adopted from Nordhaus
(2007) following a business-as-usual (BAU) emissions sce-
nario, yielding cumulative fossil fuel emissions of about 4800
GtC from 2000–2300. The CO2 emissions are plotted in Fig-
ure 1. Land-use CO2 emissions decay linearly from 2009 lev-
els to zero in 2100 and are zero thereafter. Volcanic forcings
are assumed zero and solar forcings are held constant at the
average for solar cycle 22 (1986–1996). The AMOC model
is forced with the hindcast and projected temperatures.

3.2 Observational constraints

We use six different observational data sets to calibrate
the model: (i) atmospheric CO2 concentrations from Mauna
Loa (Keeling and Whorf, 2005), (ii) CO2 concentrations
from the Law Dome ice core (Etheridge et al., 1996), (iii)
estimates of the anthropogenic carbon fluxes into the oceans
based on chlorofluorocarbon measurements (McNeil et al.,
2003), (iv) a synthesis data set of combined land and marine
global temperatures (Brohan et al., 2006), (v) estimates of
oceanic heat uptake (Gouretski and Koltermann, 2007), and
(vi) AMOC strength estimates by Bryden et al. (2005) and
Cunningham et al. (2007), with error estimates derived from
Kanzow et al. (2007) and Lumpkin and Speer (2007).

4 Inversion method

We use a Bayesian inversion technique based on a
Markov chain Monte Carlo (MCMC) algorithm (Metropolis
et al., 1953; Hastings, 1970) to estimate model parameters

from the observational data over a hindcast calibration pe-
riod of 1850–2009.

If the observational data are denoted y and the un-
known parameters Θ, the Bayesian posterior probability of
the model parameters, conditional on the observed data, is
given by Bayes’s theorem:

p(Θ|y) ∝ p(y|Θ) × p(Θ) . (25)

Here p(y|Θ) is the likelihood of the data given the param-
eters, and p(Θ) is the prior probability distribution of the
parameters. After specifying the likelihood function and pri-
ors, a Markov chain of random samples are drawn from the
joint posterior (Eq. 25) by MCMC. The marginal probability
distribution for each parameter is a kernel density estimate
constructed from the parameter’s Markov chain.

Let y = {yi} (i = 1 . . . N) be one of the individual obser-
vation time series (e.g., temperature), and µ = {f(ti; θ)} be
the model output for that data type, where the function f(·)
is the model, t is time, and θ are the unknown model parame-
ters. Each observational time series is assumed to be drawn
from a stationary normal AR(1) first-order autoregressive
process, centered on the model output, y ∼ AR1(µ, σ2, ρ),
where σ2 is the AR(1) innovation variance and ρ is the lag-1
(annual) autoregression coefficient. Defining the data-model
residuals as ri = yi − f(ti; θ), the autocorrelation can be
removed to produce “whitened” residuals which are iid nor-
mal (white noise), wi = ri − ρri−1 (i > 1). Defining the
stationary process variance as σ2

p = σ2/(1 − ρ2), the full
AR(1) likelihood function can be expressed in terms of the
whitened residuals as given in Bence (1995) (in slightly dif-
ferent notation):

p(y|θ, σ, ρ) = (2πσ2
p)−1/2 exp

 
− 1

2σ2
p

r2
1

!

× (2πσ2)−(N−1)/2 exp

 
− 1

2σ2

NX
i=2

w2
i

!
.

(26)

Here the uncertain parameters Θ = {θ, σ, ρ} include both
the unknown model parameters θ and the unknown statis-
tical parameters σ and ρ.

The residual errors in each of the time series are as-
sumed to be independent of the residuals in the other time
series, so the overall likelihood of all the data is the product
of independent likelihood factors for each data set, each of
the form given in Eq. 26. This is a simplifying assumption,
but exploratory analysis does not indicate strong correlation
between the residuals of different observational time series.

By using an AR(1) likelihood, the assimilation method
accounts for potential autocorrelation in the residuals as well
as the uncertainty in the autocorrelated process parame-
ters. This autoregressive process is intended to encompass
the combined model structural error, natural variability, and
measurement error and is estimated statistically from the
data-model residuals. Specifically, the CO2 time series from
Mauna Loa and the Law Dome as well as the global mean
surface temperature anomalies and the oceanic heat uptake
are taken to be of unknown variance and autocorrelation.
For the AMOC time series, we adopt the published variance
estimates (Bryden et al., 2005; Kanzow et al., 2007; Lumpkin
and Speer, 2007) and neglect potential autocorrelation (fix-
ing ρ = 0 and σ constant for that time series). Due to their
sparsity, the ocean carbon flux data points are also assumed
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Table 1. Estimated model and data distributional parameters,
and their prior ranges.

parameter symbol units min. max.

respiration sensitivity Q10 — 0.2 5
carbon fertilization factor β — 0 1
thermocline transfer rate η m yr−1 0.5 200
vertical diffusivity κV cm2 s−1 0.1 4
climate sensitivity S K 0.1 10
aerosol scaling α — 0 2
hydrological sensitivity h Sv K−1 0 0.06
init. temperature T0 K -0.3 0.3
init. ocean heat H0 1022 J -50 0
init. CO2 CO20 ppm 275 295
init. AMOC strength m0 Sv 5 35
autocorr. (T) ρT — 0 0.99
autocorr. (CO2, inst.) ρCO2,inst — 0 0.99
autocorr. (ocean heat) ρH — 0 0.99
std. dev. (T) σT K 0.05 0.5
std. dev. (CO2, ice) σCO2,ice ppm 0.2 20
std. dev. (CO2, inst.) σCO2,inst ppm 0.2 7
std. dev. (ocean heat) σH 1022 J 0.1 10

to be independent (and identically distributed) with normal
observational errors adopted from McNeil et al. (2003).

The estimated parameters are model parameters, AR(1)
statistical parameters, and the initial values in the temper-
ature, ocean heat, CO2, and AMOC time series. The pa-
rameters with their prior ranges are detailed in Table 1. We
assume a priori that all the parameters are independent of
each other so the joint prior p(Θ) for all the parameters fac-
torizes into a product of independent priors for each param-
eter. This prior assumption does not preclude the possibil-
ity of posterior correlations between parameters after they
have been estimated (see Section 5.2). All parameter priors
are truncated uniform distributions except for climate sen-
sitivity, which is given a diffuse truncated Cauchy(3,2) prior
intended to approximate the information contained in paleo
constraints that are neglected in our analysis (e.g., Annan
et al., 2005; Schneider von Deimling et al., 2006; Annan and
Hargreaves, 2009).

The calibrated parameters found in the inversion are
used to probabilistically project future climate observables.
The hindcasts and projections are samples from the poste-
rior predictive distribution, with the observational/process
noise superimposed. The temperature, ocean heat, and CO2

errors and autocorrelations are estimated as above, with the
CO2 error assumed the same as the instrumental time series.
The AMOC error is assumed to be ±6 Sv (1σ) in hindcasts
(1850–2009) following Bryden et al. (2005), and 2 Sv in pro-
jections (after 2009) following Cunningham et al. (2007).

5 Results and discussion

5.1 Hindcasts

The hindcasts of mean surface temperatures, oceanic
heat anomalies, atmospheric CO2 concentrations, and
AMOC strength show considerable skill. For example, the
observed surface temperature cooling after the Agung and
Pinatubo volcanic eruptions (in 1963 and 1991, respectively)
are reasonably well reproduced in the hindcasts (Figure 2).
There is a slight suggestion that a similar pattern is seen in

the oceanic heat anomaly, but this signal is relatively small
compared to the data uncertainties and the magnitude of
the data-model residuals.

The anthropogenic trend in atmospheric CO2 concen-
trations is large compared to the observation uncertain-
ties, resulting in a high signal-to-noise ratio. The relatively
large signal-to-noise ratio in the CO2 hindcasts allows rel-
atively well-constrained carbon cycle parameter estimates
(discussed below) and thereby relatively tightly constrained
CO2 projections. The signal-to-noise ratio decreases roughly
from the CO2 observations to the observations of surface
temperature, oceanic heat anomaly, and the AMOC inten-
sity.

Although the two decadal ocean carbon flux data points
are not highly informative, they are also hindcast well by
the calibrated model at its posterior mode. No strong vol-
canic response is seen in the best fit ocean carbon uptake,
but volcanic responses are visible in the upper 95% credi-
ble interval, presumably in the parametric tails that give a
stronger carbon cycle response to temperature changes.

The calibrated model hindcasts little forced change in
AMOC strength, consistent with the interpretation of Cun-
ningham et al. (2007) that the declines in AMOC strength
observed by Bryden et al. (2005) may be ascribed to natural
variability and observation error.

5.2 Parameter estimates

Parameter estimates associated with the high signal-to-
noise ratio are considerably sharpened compared to their
prior estimates (Figure 3). This is the case, for example,
for the CO2 fertilization factor and the climate sensitiv-
ity. In contrast, the estimate for the hydrological sensitivity
is much less constrained by the observations. The consid-
ered AMOC observations have very little power to sharpen
the prior estimate of the hydrological sensitivity, consis-
tent with the findings of Keller and McInerney (2008). Our
AMOC projections are therefore sensitive to prior assump-
tions about this parameter and deeply uncertain (Keller
et al., 2007b; Lempert, 2002). Both the low and high ends of
the prior range of hydrological sensitivity (0 and 0.06 Sv/K)
are close to the the predictions of different coupled models
(Zickfeld et al., 2004), so this full range of prior uncertainty
should be propagated through to the model projections even
if data cannot constrain it further.

The estimated climate sensitivity is on the low end of
recent estimates (Meehl et al., 2007, Table 8.2, Figure 9.20).
This is in part a consequence of the low value of the aerosol
forcing scaling factor α ≈ 0.6 required for the total forc-
ing to reproduce the observed temperature and ocean heat
time series (Fig. 3). The observed warming can be explained
by a low climate sensitivity and a small aerosol cooling ef-
fect. In contrast, higher climate sensitivities are compatible
with a strong aerosol cooling effect counteracting some of
the warming (cf. Forest et al., 2002). A low climate sensi-
tivity in turn implies less projected warming and AMOC
weakening.

Some of the parameter estimates show strong correla-
tions (Figure 4). For example, estimates of the ocean ther-
mocline exchange rate for CO2 and the CO2 fertilization
factor are negatively correlated (Figure 4, row 2, column 2).
This finding is similar to the findings of Ricciuto et al. (2008)
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Figure 2. Panel (a): Historic radiative forcings. The thick black
line is the total radiative forcing. The thin gray lines are, from
top to bottom, CO2, non-CO2 greenhouse gases, solar variability,
volcanic aerosols, and anthropogenic aerosols. The forcing data
are described more fully in Section 3.1. The modeled CO2 and
aerosol forcings are taken from the best fit hindcast. Panels (b)-
(e): Observations and hindcasts. The observational constraints
are shown by open circles (red): (b) surface temperature anomaly,
(c) ocean heat anomaly, (d) atmospheric CO2 concentration, (e)
ocean carbon uptake, (f) AMOC strength. The best fit (max-
imum posterior probability) model outputs are shown by solid
curves (purple), and the dashed and dotted curves are 90% and
98% predictive credible intervals. The vertical error bars in panel
(f) represent one standard deviation of the reported observation
errors (Bryden et al., 2005; Kanzow et al., 2007; Lumpkin and
Speer, 2007).

and is expected because an increased thermocline exchange
rate (stronger ocean carbon sink) requires a decreased CO2

fertilization factor (weaker terrestrial carbon sink) to result
in the same atmospheric CO2 observations. A second exam-
ple is the positive correlation between the climate sensitivity
and the aerosol scaling factor (Figure 4, row 5, column 5).
As discussed above, this positive correlation is expected be-
cause a higher climate sensitivity can be counteracted by a
stronger (negative) climate forcing from aerosols.

A third example of parameter correlation is between the
climate sensitivity and the vertical diffusivity of heat in the
ocean (Figure 4, row 4, column 4). This correlation is ex-
pected to be positive when observing surface temperatures,
and negative when observing ocean heat content (Urban
and Keller, 2009). In Figure 4 this correlation may appear
weak. In fact, the correlation between S and κV is moder-
ately positive (about 0.4). The positive correlation implies
that temperature provides a relatively stronger constraint
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Figure 3. Marginal probability density functions of the esti-
mated parameters. The horizontal axis range represents the lower
and upper bounds of the prior probability density function. The
dashed curve in the climate sensitivity plot is the non-uniform
prior distribution. All other parameter priors are bounded uni-
form and not depicted.

on climate sensitivity than does ocean heat, consistent with
the signal-to-noise ratios present in those observations (see
Section 5.1). Further evidence to support this hypothesis is
found in the marginal posterior pdf for κV in Figure 3, which
is broad, indicating that the ocean heat data do not strongly
constrain the diffusivity. This may be related to the highly
autocorrelated ocean heat residuals (Fig. 3, panel ρH), as
higher autocorrelations imply fewer effective degrees of free-
dom in the data.

As discussed in Section 2.2, the decoupled treatment
of ocean heat and carbon diffusion in the model can lead
to inconsistency between these parameters which would not
exist in a model that treats both processes using the same
parameterization of vertical mixing. The estimates for the
heat diffusion (κV ) and carbon diffusion (η) constants in
Figure 3 may lend support to the presence of such incon-
sistency, as the assimilation simultaneously implies a higher
rate of ocean heat uptake but a lower rate of ocean carbon
uptake. However, this interpretation is sensitive to the choice
of prior range for these parameters, and the relationship be-
tween the values of parameter. (For example, an upper limit
of η = 200 m/yr may not imply the same amount of vertical
mixing as an upper limit of KV = 4 cm2/s.) Another line of
evidence comes from Figure 4, which shows the inferred κV

and η to be uncorrelated with each other. One might expect
them to be correlated if they arise from the same underly-
ing mixing processes, assuming that the highly aggregated
observations are sufficiently informative to detect this cor-
relation. However, it is difficult to evaluate the expected
amount of correlation between the two diffusion parameters
in this model, considering that both are “effective” parame-
ters which attempt to encode a variety of non-diffusive mix-
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Figure 4. Two dimensional projections of the posterior probabil-
ity density functions of the estimated model parameters illustrat-
ing the correlation in the posterior estimates. Lowess-smoothed
curves are superimposed on the pairwise scatterplots as a guide
to the eye.

ing and biogeochemical processes, and hence are difficult to
interpret.

5.3 Projections

The atmospheric CO2 concentrations and the mean sur-
face air temperatures are projected to increase, with a con-
siderable widening of the projection confidence bounds (Fig-
ure 5). The temperature projections are relative to 1850, and
are low compared to recent IPCC projections (Meehl et al.,
2007, Sec. 10.3) due to the low central estimate of climate
sensitivity found in our study. We find a 1.5 K mean warming
over the 21st century in our BAU emissions scenario, similar
to the warming projected by the IPCC in the B2 emissions
scenario. However, the forcing scenario which most closely
approximates our 2100 CO2 concentration projections (Fig.
5a) is the A1B scenario, with approximately 2.5 K of warm-
ing projected by the IPCC over the 21st century.

The AMOC intensity is projected to decrease gradually
over time, with a sizeable probability of an AMOC collapse
(defined here as an AMOC intensity of zero) within the con-
sidered time horizon. The AMOC strength decreases by an
average of 17 percent from 2000 to 2100. This reduction
is consistent with but slightly lower than the projections
of the coupled climate models compared in Schneider et al.
(2007b), and smaller than the results of Knutti et al. (2003),
which show AMOC reductions of approximately 25 and 60
percent, respectively over the same time horizon. (The 2200
projections for AMOC strength include some negative val-
ues, not shown in the graph. This is due to the addition
of observational noise, as the model itself does not produce
AMOC reversals.)

An AMOC collapse has been interpreted as a low-
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Figure 5. Probabilistic projections of (a) atmospheric CO2 con-
centrations, (b) global mean surface temperature anomalies, and
(c) AMOC strength in 2010 (solid), 2100 (dashed), and 2200
(dash-dotted).

probability event (Alley et al., 2007; Rahmstorf and Zick-
feld, 2005; Wood et al., 2003). The model projections suggest
that an AMOC collapse in the 21st century is very unlikely
(i.e., a probability of less than ten percent, Figure 6, dashed
curve), consistent with the recent IPCC assessment (Alley
et al., 2007). (The AMOC is defined to be collapsed if the
modeled AMOC strength is zero.) The projected probability
of an AMOC collapse increases gradually and almost linearly
after 2150 to reach 10 percent in the next two centuries, and
over 35 percent by 2300.

Although the probability of experiencing an AMOC col-
lapse in the 21st century is small according to our analysis,
the probability of committing to a future collapse within
the next century can be higher. To test this, we explore
several alternate forcing scenarios in which the BAU emis-
sions trajectory is followed to a given year, after which the
CO2 emissions are abruptly reduced to zero and remain zero
thereafter. An AMOC collapse is “triggered” by that year if
the AMOC later collapses before 2300. A future collapse is
possible in a zero-emissions scenario because, although there
are no further CO2 emissions, atmospheric greenhouse gas
concentrations and climatic forcing of the AMOC remain
high until natural carbon sinks can remove CO2 from the
atmosphere. Our analysis indicates that if emissions are re-
duced to zero after 2100, there remains a 4% chance that
the AMOC will collapse by 2300 (Figure 6, solid curve), or
18% if emissions are halted in 2150. If CO2 emissions stop in
2200, the probability of committing to an AMOC collapse
rises to 30%.

6 Caveats

The results of this proof-of-concept study hinge on a
large number of assumptions that impose severe caveats
on the forthcoming conclusions and point to potential fu-
ture improvements. Relevant examples for such potential
improvements include: (i) using a more refined Earth system
model, (ii) considering information contained in the spatial
structure of the observational constraints, (iii) representing
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Figure 6. Model-derived risk estimate of a AMOC collapse over
time. The dashed curve (blue) is the probability that the AMOC
will be in a state of collapse in a given year. The solid curve
(red) depicts the commitment to future AMOC collapse, i.e., the
probability of crossing a collapse threshold. It is the probability
that if BAU emissions are reduced to zero beyond a given year, the
AMOC will nevertheless be in a state of collapse in the year 2300.
The shaded blue box represents the judgement of the 2007 IPCC
Fourth Assessment Report (Alley et al., 2007), < 10% probability
of collapse by 2100.

the uncertainty in the CO2 emissions scenarios, and (iv)
adding paleo-proxies to the analyzed data set. These future
research areas are briefly discussed below.

First, the adopted model is extremely simple, does not
fully couple the climate, carbon cycle, and AMOC compo-
nents, and misses likely important feedbacks such as changes
in the nitrogen cycle (Houghton et al., 1998) or the Green-
land ice sheet dynamics (Zwally et al., 2002). Increasing the
model complexity is a logical step to reduce this problem
(e.g., Challenor et al., 2006), but many of these potentially
relevant feedbacks are still poorly resolved in Earth sys-
tem models. Our study is also silent on the relative con-
tributions of the climate parameter uncertainty vs. the car-
bon cycle parameter uncertainty to the total uncertainty
in the AMOC projections. Second, our analysis considers
only globally aggregate information (e.g., the global aver-
age surface temperature). This approach reduces the com-
putational burden considerably, but it neglects potentially
useful information contained in the spatial signal structure.
For example, the pattern of oceanic heat and other tracer
anomalies may provide useful constraints on the ocean dif-
fusivity (Cessi et al., 2006; Schmittner et al., 2009). Third,
this study considers a single CO2 emissions scenario to iso-
late the effects of key uncertainties in the carbon, climate,
and AMOC system from the uncertainties in the socioeco-
nomic system. The projections are strongly contingent on
the adopted business-as-usual CO2 emissions scenario, and
are hence silent on the effects of potential cuts in CO2 emis-
sions due to climate policies, as well as on the uncertainty
in the future BAU emissions trajectory. Using probabilistic

CO2 emissions scenarios (Keller et al., 2007a; Webster et al.,
2002) would likely change the estimated probabilities of a fu-
ture AMOC collapse. Fourth, this study uses century-scale
observations that are mostly derived from the instrumen-
tal record. Adding paleo-observations such as reconstructed
temperatures over a millennium time-scale may provide im-
portant additional constraints (Crowley, 2000; Hegerl et al.,
2006). Last, but not least, the projections are quite sensitive
to forcing assumptions in the historical calibration period,
such as reconstructions of atmospheric SO2 concentrations
and the strength of the aerosol indirect effect.

Estimates of the probability of “tail-area events” (such
as an AMOC collapse in this analysis) are at this time often
deeply uncertain, i.e., they can hinge on subjective assump-
tions about factors such as model structures and parameter
priors (Keller and McInerney, 2008; Schneider et al., 2007b).
Quantifying the effects of this deep uncertainty on the fu-
ture projections is an area of active research (cf. Tomassini
et al., 2007) and a key avenue to potentially improve climate
change decision-making (cf. Ellsberg, 1961; Lempert, 2002).

7 Conclusions

We develop a simple and computationally efficient
model of the coupled climate, carbon, and AMOC systems.
We demonstrate the feasibility to calibrate this model using
a Bayesian inversion technique to derive probabilistic hind-
casts and projections that carefully sample the tail areas
of the parameter probability density function. The proba-
bility of an AMOC collapse in the 21st century under a
business-as-usual CO2 emissions scenario is less than one in
ten in our simple model. This estimate is consistent with
the recent IPCC assessment (Alley et al., 2007). However,
the projected probability of an AMOC collapse increases
beyond this century and exceeds one in three over the next
three centuries. Although the probability of experiencing an
AMOC collapse in the 21st century is small, the probability
of crossing a forcing threshold and committing to a future
collapse may be as high as one in twenty during this century
and over one in three during the next.

8 Acknowledgements

We thank Kirsten Zickfeld and Elmar Kriegler for pro-
viding the source codes of the DOECLIM and the AMOC
box models and for many insightful discussions, Brian Tut-
tle for assistance with model development, and James An-
nan and anonymous reviewers for comments and sugges-
tions. Funding for this project was provided by the U.S.
Environmental Protection Agency under Purchase Order
EP07H000339 and by the National Science Foundation. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material, and remaining errors, are those of
the authors alone.

REFERENCES

Adger, N., Aggarwal, P., Agrawala, S., Alcamo, J., Allali, A.,
Anisimov, O., Arnell, N., Boko, M., Canziani, O., Carter, T.,
Casassa, G., Confalonieri, U., Cruz, R. V., Alcaraz, E. d. A.,

c© 0000 Tellus, 000, 000–000



10 N. M. URBAN AND K. KELLER

Easterling, W., Field, C., Fischlin, A., Fitzharris, B. B., Garcá,
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C. Frölich, PMOD/WRC, http://www.pmodwrc.ch/pmod.php?
topic=tsi/composite/SolarConstant.

Gouretski, V. and Koltermann, K. P. 2007. How much is the ocean
really warming?. Geophysical Research Letters 34, L01610.

Hastings, W. K. 1970. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57(1), 97–
109.

Hegerl, G. C., Crowley, T. J., Hyde, W. T. and Frame, D. J. 2006.
Climate sensitivity constrained by temperature reconstruc-
tions over the past seven centuries. Nature 440(7087), 1029–
1032.

Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky,
C. T. 1999. Bayesian model averaging: A tutorial. Stat Sci
14(4), 382–401.

Hofmann, M. and Rahmstorf, S. 2009. On the stability of the
Atlantic meridional overturning circulation. Proceedings of the
National Academy of Sciences of the United States of America
106, 20584–20589.

Hooss, G., Voss, R., Hasselmann, K., Maier-Reimer, E. and Joos,
F. 2001. A nonlinear impulse response model of the cou-
pled carbon cycle-climate system (NICCS). Climate Dynamics
18(3-4), 189–202.

Houghton, R. A., Davidson, E. A. and Woodwell, G. M. 1998.
Missing sinks, feedbacks, and understanding the role of terres-
trial ecosystems in the global carbon balance. Global Biogeo-
chemical Cycles 12(1), 25–34.

Jain, A. K. and Yang, X. J. 2005. Modeling the effects of two
different land cover change data sets on the carbon stocks
of plants and soils in concert with CO2 and climate change.
Global Biogeochemical Cycles 19(2), GB2015.

Kanzow, T., Cunningham, S. A., Rayner, D., Hirschi, J. J. M.,
Johns, W. E., Baringer, M. O., Bryden, H. L., Beal, L. M.,
Meinen, C. S. and Marotzke, J. 2007. Observed flow compen-
sation associated with the MOC at 26.5◦N in the Atlantic.
Science 317(5840), 938–941.

Keeling, C. D. and Whorf, T. P. 2005. Atmospheric CO2

records from sites in the SIO air sampling network, Techni-

cal report, Carbon Dioxide Information Analysis Center, Oak
Ridge National Laboratory. Updated data available online:
P. Tans, NOAA/ESRL, ftp://ftp.cmdl.noaa.gov/ccg/co2/

c© 0000 Tellus, 000, 000–000



PROBABILISTIC HINDCASTS AND PROJECTIONS OF THE MERIDIONAL OVERTURNING CIRCULATION 11

trends/co2 annmean mlo.txt.
Keller, K. and McInerney, D. 2008. The dynamics of learning

about a climate threshold. Climate Dynamics 30, 321–332.
Keller, K., Tan, K., Morel, F. M. M. and Bradford, D. F. 2000.

Preserving the ocean circulation: Implications for climate pol-

icy. Climatic Change 47(1-2), 17–43.
Keller, K., Bolker, B. M. and Bradford, D. F. 2004. Uncertain

climate thresholds and optimal economic growth. Journal of

Environmental Economics and Management 48, 723–741.
Keller, K., Miltich, L. I., Robinson, A. and Tol, R. S. J. 2007a.

How overconfident are current projections of carbon diox-
ide emissions?. Working Paper Series, Research Unit Sus-
tainability and Global Change, Hamburg University. FNU-
124, http://ideas.repec.org/s/sgc/wpaper.html.

Keller, K., Schlesinger, M. and Yohe, G. 2007b. Managing
the risks of climate thresholds: Uncertainties and infor-
mation needs. Climatic Change 91, 5–10. doi:10.1007/

s10584-006-9114-6.
Knutti, R., Stocker, T. F., Joos, F. and Plattner, G. K. 2003.

Probabilistic climate change projections using neural net-
works. Climate Dynamics 21(3-4), 257–272.

Krebs, U. and Timmermann, A. 2007. Tropical air-sea interac-
tions accelerate the recovery of the Atlantic meridional over-
turning circulation after a major shutdown. Journal of Cli-
mate 20, 4940–4956.

Kriegler, E.: 2005, Imprecise probability analysis for integrated
assessment of climate change. Ph.D. thesis, University of Pots-
dam, Potsdam, Germany.

Kuhlbrodt, T., Rahmstorf, S., Zickfeld, K., Vikebø, F. B., Sundby,
S., Hofmann, M., Link, P. M., Bondeau, A., Cramer, W. and
Jaeger, C. 2009. An integrated assessment of changes in the
thermohaline circulation. Climatic Change 96, 489–537.

Latif, M., Roeckner, E., Mikolajewski, U. and Voss, R. 2000. Trop-
ical stabilization of the thermohaline circulation in a green-
house warming simulation. Journal of Climate 13, 1809–1813.

Lempert, R. J. 2002. A new decision sciences for complex systems.
Proceedings of the National Academy of Sciences of the United
States of America 99, 7309–7313.

Link, P. M. and Tol, R. S. J. 2004. Possible economic impacts of
a shutdown of the thermohaline circulation: an application of
FUND. Portuguese Economic Journal 3, 99–114.

Lohmann, U. and Feichter, J. 2005. Global indirect aerosol effects:
a review. Atmospheric Chemistry and Physics 5, 715–737.

Lumpkin, R. and Speer, K. 2007. Global ocean meridional over-
turning. Journal of Physical Oceanography 37(10), 2550–2562.

Manabe, S. and Stouffer, R. J. 1994. Multiple-century response
of a coupled ocean-atmosphere model to an increase of atmo-
spheric carbon dioxide. Journal of Climate 7, 5–23.

McNeil, B. I., Matear, R. J., Key, R. M., Bullister, J. L. and
Sarmiento, J. L. 2003. Anthropogenic CO2 uptake by the
ocean based on the global chlorofluorocarbon data set. Sci-
ence 299(5604), 235–239.

Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P.,
Gaye, A., Gregory, J., Kitoh, A., Knutti, R., Murphy, J., Noda,
A., Raper, S., Watterson, I., Weaver, A. and Zhao, Z.-C.: 2007,
Climate Change 2007: The Physical Science Basis. Contribu-
tion of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York,
NY, USA.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,
A. H. and Teller, E. 1953. Equation of state calculations by
fast computing machines. J. Chem. Phys. 21, 1087–1092.

Nordhaus, W. D. 2007. The challenge of global warm-
ing: Economic models and environmental policy, Technical

report, http://nordhuas.econ.yale.edu/DICE2007.htm, ac-
cessed May 2, 2007, model version: DICE-2007.delta.v7.

Obata, A.. 2007. Climate-carbon cycle model response to fresh-

water discharge into the North Atlantic. Journal of Climate
20, 5962–5976.

Rahmstorf, S. and Zickfeld, K. 2005. Thermohaline circulation
changes: A question of risk assessment - an editorial review
essay. Climatic Change 68(1-2), 241–247.

Ramankutty, N. and Foley, J. A. 1999. Estimating historical
changes in global land cover: Croplands from 1700 to 1992.
Global Biogeochemical Cycles 13(4), 997–1027.

Ricciuto, D., Davis, K. and Keller, K. 2008. A Bayesian calibra-
tion of a simple carbon cycle model: The role of observations
in estimating and reducing uncertainty. Global Biogeochemical
Cycles 22, GB2030.
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